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1. Introduction and state of the art

The production of gears demands high-precision engineering. Due to
the narrow geometric tolerances, the golden rule of metrology (measur-
ing a feature with an uncertainty less than 10 % of its tolerance) can often
not be reached during quality inspection. Thus, the international stan-
dard defines 20�30 % as acceptable [1], and toothing qualities grade 3 or
better cannot be proven on an industrial level. In order to increase the
producible quality of gears, the geometric assessment has to become
more reliable [2]. Numerous developments are in progress for the uncer-
tainty reduction in gear inspection, dealing with calibration [3,4] and
data acquisition by means of optical measurement principles that work
with point [5], line [6] or area-based [7] measurement approaches. This
article, however, focuses on the investigation of the uncertainty contribu-
tions from the data evaluation.

The evaluation of geometric gear data is divided into two fields,
the determination of unknown gear parameters as well as the quality
inspection of gears with a known nominal geometry. The estimation
of unknown gear parameters requires a partitioning of the measuring
data into different geometric areas, e. g., the effective involute, tip or
root reliefs [8]. Automatic partitioning approaches can be clustered
into the following categories: edge detection, region growing, attri-
bute clustering and hybrid methods [9]. While edge-based methods
are sensitive to noisy data [10] and will not succeed in identifying
smooth transition borders [11], region-based methods tend to over-
or under-segmentation [10]. None of those methods seems to be suit-
able for an accurate partitioning of gear data and was ever applied for
it. In contrast, attribute-clustering methods can be robust [10] and, if
a priori knowledge is provided by a geometric model, the achievable
precision can be increased in order to fulfil the high demands of gear
technology. One implementation of attribute clustering is the holistic
approximation (HA), which is a model-based method that combines the
automated partitioning with the gear parameter approximation [12,13].
While the HA was introduced for the 3D geometry evaluation of micro
features [14], the recent enhancement by a root point iteration [15] in
principle enables the estimation of gear parameters of not only unmodi-
fied but alsomodified flanks. However, the application of the HA to auto-
matically determine unknown geometric parameters of modified
involute flanks is pending.

The other field of data evaluation, the quality inspection of involute
gears, is a well-standardized process according to ISO 1328�1 [8]. The
standard evaluation of profile and helix deviations is a two-step
approximation process in two cross-sections in 2D. For gears with
unmodified flanks, the orthogonal distances between the measure-
ment points and the geometric gear model, which are required for the
approximation, can be calculated directly [16]. For modified flanks,
however, an iterative root point calculation is necessary to determine
the orthogonal distances, which is currently missing in the standard
procedure. Instead, the root points on the unmodified flank are used.
Currently it is not clear, how this inaccuracy depicted in Fig. 1 influen-
ces the uncertainty of the evaluated deviation parameters, like profile
or helix slope deviations [8]. The enhanced HA offers the possibility to
correctly determine the root points even onmodified flanks, but it was
not yet applied for this gear inspection task.

Therefore, the aim of the article is to prove the applicability of the
HA for the estimation of unknown toothing parameters and the
inspection of modified gears, and it is assessed whether the integrated
root point iteration enables more precise results or an accelerated gear
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Fig. 1. (a) Geometry of an involute gear with the point p on an involute flank and the cor-
responding roll angle ξ , defined by the surface normal, which is a tangent to the base circle
(green dotted line). The black dashed line is the roll length, which is the product of the roll
angle ξ and the base circle radius rb. (b) Detail view around a measuring point pm with the
different orthogonal distances di and dc to the root points pi and pc on an ideal involute
(unmodified) and a crowned involute (modified), respectively. In case of crowned flanks,
the standard data evaluation uses the distance di to the unmodified flank instead of calcu-
lating the distance dc to the modified flank.
quality inspection with a decreasing point density. For this purpose,
the HA method applied for the geometric evaluation of a gear profile
of a crowned involute with tip relief is described in Section 2. The
application is focused on external helical gears, as this type of gear has
the greatest relevance for actual practical applications. The results are
presented and discussed in Section 3, divided into the estimation of
unknown gear parameters and gear inspection. Section 4 finally sum-
marizes the findings.

2. Method

The holistic approximation uses a parametric geometric model in
combination with a least squares approach. The following sub-sec-
tions introduce the geometric model of the measurement object, the
HA approach as well as the root point iteration.

2.1. Geometric gear model

As a gear with amodified tooth flank, the geometric combination of a
crowned involute (see Fig. 2a) with a tip relief (see Fig. 2b) within the
transverse section is considered. The resulting profile with its shape
parameters as = [rb, Ca, rb,r] and position parameters ap = [cb, cb,r, rr] are
presented in Fig. 2c. Here, rb and rb,r are the base circle radii of the invo-
lute and of the tip relief, respectively, Ca is the crowning of the involute,
cb and cb,r are the polar angles of the involute and the tip relief, respec-
tively, and rr is the starting radius of the tip relief. This model assumes
that the workpiece coordinate system is estimated in advance by mea-
suring reference datum elements, as usual in the standard inspection
procedure.
Fig. 2. Flank modifications (the red lines indicate the unmodified flank, the red and
black dashed lines are the profile lines of the unmodified and the modified flank,
respectively) and the geometric model: (a) Crowning in profile direction. (b) Tip relief
on an involute flank, starting at radius rr. (c) Geometric model with feature parameters:
base circle radii rb and rb,r of the involute and the tip relief, respectively, crowning
amplitude Ca, polar angles (base thickness half angles) cb and cb,r of the involute and
the tip relief, respectively, as well as the starting radius of the tip relief rr. The red and
grey dotted lines represent the unmodified involute, and the blue dotted line is the
involute of the tip relief.
The HA is implemented from the point of view of geometric data
processing, using shape and position parameters to define the
approximating elements. Therefore, the respective base circle radii
are evaluated as shape parameters for the involutes instead of the
2

modules or helix angles. Note that it is common for gear inspection
to use specially defined deviation parameters to describe geometric
deviations [8], which are related to the shape parameters of the geo-
metric elements. As an example, a tip relief is usually identified by its
pressure angle at,r, but can also be assessed by the base circle radius
rb;r according to the geometrical relation

rb;r ¼ 0:5 ¢ mn

cos bð Þ ¢ Z ¢ cos at;r
� �

; ð1Þ

with the normal module mn, the helix angle b and the number of
teeth Z.

2.2. Holistic approximation (HA)

To obtain the best estimates of the shape and position parameters
as, ap, the approach is to minimize the summed squares of the
k = 1, . . ., Nj orthogonal point distances dj,k for the j = 1, . . ., NE integral
geometric elements, weighted by individual factors wj,k:

minap ;as

XNE

j¼1

XNj

k¼1

wj;k ¢ dj;k ap; as
� �� �2

2
4

3
5: ð2Þ

Note that during the optimization of the free geometric parameters
ap and as, the assignment of the measuring points to the geometric
elements is also adapted, i. e. the numbers of points Nj in general vary
during the iterative optimization.

For the modified gear described in Section 2.1, the NE = 2 integral
elements are the involute and the tip relief with N1 and N2 measuring
points, respectively. Although the weighting factor is a free design
parameter of the HA to optimize the result, an equal weighting factor
wj,k = 1 is initially used in the subsequent demonstration. As decision
rule for the assignment, the polar radius of the measuring point rm is
compared to the position parameter rr in the actual iteration step:

� rm < rr: The measuring point is assigned to the involute.
� rm > rr: The measuring point is assigned to the tip relief.

As a result, the HA combines parameter estimation and partition-
ing in a single holistic optimization routine.

2.3. Root point iteration

The HA minimizes the orthogonal distances of the measuring
points to the approximating elements, which is referred to as geo-
metric fitting or best fit approximation. In contrast to an unmodified
involute, where the orthogonal distance from a measuring point can
be calculated directly [16], the distance calculation for the considered
modified involute requires an iterative root point estimation. The
orthogonal distance

d ¼ kpm � pc k 2 ð3Þ
is defined as the Euclidean norm of the measuring point pm = {xm, ym,
zm} and the root point pc = {xc, yc, zc}, cf. Fig. 1. It can be calculated
with the constraint g(pc = f(ap, as)) = 0, which means the root point
has to be on the nominal geometry described by the function f.
Accordingly, the orthogonal distances are calculated by solving the
constrained minimization task

minpc
kpm � pc k 2 þ λ ¢ g pc ¼ f ap; as

� �� �� � ð4Þ
with the Lagrange multiplier λ by using the iterative Newton method.
This root point iteration is a cascaded minimization within the
approximation task. Thus, in each approximation step, the parame-
ters ap and as are constant during the root point iteration. Finally, the
correct root point eliminates the Lagrange term in Eq. (4) so that it
equals Eq. (3).

3. Results

The HA is verified and validated by means of simulations and
experiments, respectively, for both the determination of unknown



gear parameters and the gear inspection with known nominal gear
parameters. For validation purposes, profile lines are measured on a
helical gear (number of teeth Z = 40, module mn = 2.0mm, pressure
angle at = 18°, helix angle b =�30.75°) with modified flanks (crown-
ing Ca = 5.0 µm, tip relief at,r = 23°) using a coordinate measuring
machine (CMM) with 1.0mm diameter ruby balls, see Fig. 3.
Fig. 3. Tactile measurements on a helical gear with modified flanks using a star probe
with 1.0mm diameter ruby balls.

Fig. 5. Mean base circle radius deviations drb of 100 repeated simulations over the
level ae/2 of equally distributed noise as position measurement noise (the error bars
represent the standard error) together with the normalized standard deviation sr,b of
the approximated base circle radii, normalized by the range ae of the position measure-
ment noise.
3.1. Estimation of unknown gear parameters

The fundamental geometry of an involute toothing is defined by
four parameters: module, pressure and helix angle as well as number
of teeth. The reverse engineering of unknown parameters requires the
partitioning of different geometric areas on the flanks, and the HA
offers an automated optimal partitioning. However, there is no repro-
ducible possibility to generate a reference for real measurement data
of modified gears to compare with, as no software is available which
offers an adequate partitioning. Thus, the partitioning results are vali-
dated qualitatively by Fig. 4, showing a comprehensible assignment of
each point to the involute or the tip relief region with orthogonal dis-
tances to the estimated gear geometry smaller than 1 µm.
Fig. 4. Result of the automatic partitioning of the holistic approximation for real mea-
surement data with the residual orthogonal distances dc to the crowned involute and
the tip relief, respectively. The standard deviation is 0.34 µm for the involute residuals
and 0.53 µm for the relief residuals.
Furthermore, the HA is verified using simulated measuring points
with an equally distributed measurement uncertainty in profile nor-
mal direction within the range [-ae/2 . . . ae/2]. Here, 100 points per
profile are simulated for a similar gear geometry with normal module
mn = 5.0mm, Z = 21 teeth, pressure angle at = 20°, pressure angle
at,r = 30° of the tip relief and crowning Ca = 20 µm.

In addition to the measurement uncertainty, a random profile
slope deviation is included in each simulated gear profile measure-
ment by varying the base circle radius with a normal distribution
with 5 µm standard deviation. The simulation is repeated 100 times
for different noise levels ae/2, and the evaluated deviations drb to the
nominal base circle radius rb,0 = 49.3339mm are presented in Fig. 5.

The mean base circle radius deviations (black crosses in Fig. 5) are
below 0.2 µm with standard uncertainties in the same order of mag-
nitude. In order to test for systematic deviations, an analysis of var-
iances (AnOVa) is performed. Firstly, the homogeneity of variances is
analyzed by means of a Levene test [17], which shows that equal var-
iances cannot be assumed. Therefore, a Welch-AnOVa is applied to
investigate systematic influences. The result of the Welch test is
Frb(4;495) = 0.67 < 2.39 = Fcrit(0.05;4;495). As a result, with a
3

probability of error of 5 %, the HA results of the estimated base circle
radius contain no systematic deviations.

To characterize the random deviations, the standard deviation of
the base circle radius is normalized to the individual noise ranges ae
(red circles in Fig. 5). As a result, it amounts to 70�90 % of the noise
range of the data acquisition. Indeed, the increase of the standard
deviation of the estimated base circle radius with an increasing noise
level ae/2 agrees with the result of Levene's test concerning the vari-
ance inhomogeneity. Hence, the uncertainty of the HA is mainly
scaled by the noise of the data acquisition, but note that the random
deviations are also determined by the number of measuring points.
As a result, the base circle radius of a crowned flank with tip relief is
reliably estimated, which demonstrates the capability of the HA for an
automated estimation of unknown geometric parameters of modified
involute gears. With the base circle radius as a fundamental shape
parameter, the remaining gear parameters can be estimated according
to Eq. (1) with additional measurements, e. g., in helix direction.
3.2. Gear inspection with known nominal gear parameters

The two-step approximation is the standard evaluation procedure
for a modified profile, but uses an incorrect root point for calculating
the orthogonal distance, see Fig. 1. Therefore, it is studied whether
the HA is an alternative inspection approach and if the iterative root
point determination, that is integrated in the HA, leads to more pre-
cise results.

The profile slope deviation for a randomly chosen tooth is evalu-
ated as reference with the commercial software QUINDOS to
fHa,ref =�0.8 µm within the diameters DCf = 89.14mm and
DFa = 97.36mm, and the crowning is determined to the reference
value Ca,ref = 5.0 µm. The actual base circle radius

rb ¼ rb;nom ¢ 1þ fHa
La

� 	
ð5Þ

follows from the nominal base circle radius rb,nom, the profile slope
deviation fHa and the evaluation length La. This linear relation is valid
for unmodified involutes and can be used to determine the reference
value rb,ref = 43.5337mm, as the standard two-step evaluation
approximates an unmodified flank.

The surface coordinates measured by the CMM are also processed by
the HA. Note that the evaluation boundaries are set to the same values
as in the reference evaluation for the sake of comparability, i. e. the
automatic partitioning capability needs to be disabled for the compari-
son. The HA calculates the crowning amplitude to Ca,HA = 5.1 µm. In
order to compare the base circle radii, the crowning of the approximat-
ing element must be set to zero and this degree of freedom is locked in
a second approximation run in the HA. As a result, the HA calculates
rb,HA = (43.5339§0.0008) mm. The uncertainty was estimated for this
example based on the estimations in Section 3.1 (Fig. 5) and a probing
error of ae = 0.9 µm (kp = 1). The differences to the reference values are



0.1 µm (Ca) and 0.2 µm (rb), respectively, and are not significant with
respect to the measurement uncertainty. This means, on the one hand,
that the effect of using a wrong root point in the standard evaluation is
negligible. On the other hand, the HA can be considered as validated for
the inspection of modified gears, since the HA algorithm is able to reach
the same accuracy as the standard evaluation.
3.3. Optimized gear inspection

In order to analyze whether the HA is able to evaluate more pre-
cise results in combination with a decreasing point density, the set of
111 measuring points is evaluated with both the HA and the com-
mercial software in the same evaluation range, and the point density
is stepwise reduced by a factor fr. The resulting base circle radius
deviations Drb to the reference value with no point reduction are pre-
sented in Fig. 6.
Fig. 6. Base circle radius deviations Drb caused by evaluating a reduced number of
points (point reduction factor fr) compared for standard evaluation and holistic
approximation.)
As a result, there is no significant difference in the effort, but the
standard evaluation procedure is more robust with respect to a
decreasing point density or increasing factor fr, respectively. Using
the HA, a reduction of the point density by a factor of 8 leads to devia-
tions of the base circle radius of more than 10 µm with respect to the
result without reducing the point density. The reason is that the
more accurate distance calculation within the HA requires additional
degrees of freedom for the cascaded root point approximation, cf.
Eq. (4), and this multidimensional optimization is found to be more
sensitive to a reduced signal-to-noise ratio or point density, respec-
tively. However, the required maximum lateral point distance for the
HA with root point iteration of 0.1 µm is in perfect agreement with
the ISO 1328�1 [8].

4. Summary

The extension of the HA by a root point iteration is validated for
the determination of unknown gear parameters for crowned invo-
lutes as well as for gear inspection with nominal parameters. As a
result, the HA provides a reliable and automated estimation of
unknown gear parameters. For this task, no systematic deviations are
observed, and standard deviations of 70 to 90 % of the noise level of
the input data are reached for involutes acquired with 100 points.

The standard gear inspection procedure with known nominal gear
parameters contains two evaluation steps, which imply errors in cal-
culating the orthogonal distances of the measuring points to a
crowned involute. The studied alternative approach is approximating
the measuring points directly by a crowned involute, e. g., by the
capabilities of the extended HA. Whereas for the standard point den-
sity both approaches deliver similar results with deviations below
0.2 µm, a detailed comparison revealed that the standard two-step
approximation is less sensitive to a decreasing point density of noisy
4

data. Although using the correct root point, the HA does not signifi-
cantly decrease the measurement uncertainty. But, on the other
hand, the HA is fast and its implicit optimal partitioning enables auto-
mated evaluations and is able to deliver results with minimized
uncertainty if the evaluation range is not specified or unknown.

As a result, the HA is demonstrated for the first time to be applica-
ble for gear measurement tasks with modified flanks. As outlook, a
3D implementation of the HA for gear measurement tasks seems
promising, since 3D inspection was already demonstrated for micro
drawing dies [14]. Thus, in the future, the HA will also be capable for
the calculation of areal gear deviation parameters.
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